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Introduction 

 Instability of compressible or incompressible flows has been 
studied extensively by a number of research workers in past few decades.   
In almost all such investigations, the Boussinesq’s approximation is used to 
simplify the equations of motion.  

The instability of fluid flows in a porous medium under varying 
assumptions has been well summarized by Scheidegger

1
 and Yih

2 ,3 
. While 

investigating the flows or flow instabilities through porous medium, the 
liquid flow has been assumed to be governed by Darcy’s law

4
 by most of 

the research workers, which neglects the inertial forces on the flow. 
Brinkman

5 
proposed a plausible modification to Darcy’s law that takes into 

account the viscous forces. Goel, Agrawal and Jaimala
6
 examined the 

shear flow instability of an incompressible visco-elastic second order fluid 
in a porous medium in which the modified Darcy’s law is replaced by the 
celebrated Brinkman model so that both the inertia and viscous terms are 
included in their usual forms. 

The behavior of conducting fluid is very much different in the 
absence and in the presence of a magnetic field. The interesting properties 
associated with a magnetic field, have attracted a number of research 
workers to work in this direction. Bansal and Agrawal

7
 have studied the 

thermal instability of a compressible shear flow in the presence of a weak 
applied magnetic field. The problem of compressible shear layer in the 
presence of a weak applied magnetic field through porous medium has 
been studied by Bansal, Bansal and Agrawal

8
.  

The thermosolutal convection in a porous medium was studied by 
Nield 

9
, Chakrabarti and Gupta

10
 and Sharma etal

11
. Khare and Sahai

12
 

have studied the thermosolutal convection in a heterogeneous fluid layer in 
a porous medium in the presence of magnetic field. Using the model as 
suggested by, Banerjee and Agrawal

13 
investigated the thermal instability 

of parallel shear flows in the presence of both adverse and non-adverse 
temperature gradients. In the present paper, we have examined within the 
framework of linear analysis, the thermosolutal instability of an 
incompressible viscous fluid in the presence of magnetic field confined in 
an anisotropic porous medium.  

Though some literature has been reported in which magnetic field 

Abstract 
The paper examines, within the framework of linear stability 

analysis with the model suggested by Brinkman, the thermal instability of 
an incompressible viscous fluid in the presence of magnetic field confined 
in an anisotropic porous medium.  Uniform temperature and concentration 
gradients are maintained along z-axis. The interesting properties 
associated with magnetic field have attracted a number of different results 
on stability by using perturbations and normal mode analysis. In present 
paper, the important results obtained include different conditions of 
stability, existence of oscillatory modes, non-oscillatory modes, discussion 
for stable and unstable modes, if exist in the problem. 
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destabilizes a wave number range known to be state 
in its absence. [Kent

14
 ,Gilman

15
 and Jain

16
] in most of 

the situations magnetic field has a stabilizing 
effect.Kirti Prakash

 
and Naresh Kumar

17 
examined the 

thermosolutal instability of a Maxwellian visco-elastic 
fluid in porous medium in the presence of variable 
gravity and suspended particles.Anshu Agarwal, 
Jaimala and S.C.Agrawal

18
 examined the shear flow 

instability of visco-elastic fluid in an anisotropic porous 
medium. 
Aim of the Study 

 In this paper an attempt has been made to 
examine the thermosolutal instability of an   
incompressible, viscous fluid in the presence of 
magnetic field and confined in a porous medium 
following Brinkman model. Also we have to examine 
the Uniform temperature and concentration gradients 
along z-axis. The important results obtained include 
different conditions of stability, existence of oscillatory 
modes, non-oscillatory modes, discussion for stable 

and unstable modes, if exist in the problem. 
Formulation of the Problem 

In this paper, the thermosolutal instability of 
an incompressible, viscous fluid confined in an 
anisotropic porous medium in the presence of 
magnetic field has been discussed.The fluid system 
has been considered between two rigid boundaries 

talking along x-axis and situated at 0,z  and z d  

respectively. The magnetic field has also been 
considered along x-axis. Uniform temperature and 
concentration gradients are maintained along z-axis. 
Equations expressing the conservation of momentum, 
mass, magnetic field, temperature, solute mass 
concentration and equation of state in Brinkman 
model are: 
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where    
v = fluid velocity, 
H = magnetic field vector, 

  = density, 

  = viscosity coefficient, 

  = thermal diffusivity, 

'  = solute diffusivity  

  = thermal expansion coefficient, 

'  = solute expansion coefficient, 

  = medium porosity, 

1k  = ),,( zyx kkk  medium permeability, 

and  g         = (0, 0,–g), the gravitational 
acceleration. The suffix zero indicates the reference 
state. The basic state under investigation is, therefore, 
characterized by 

(2.8)     

,'

,0,0,,0,0,0

00

0

zCCandzTT

H

 

 Hv         

where  






 


d

TT 21  and  






 


d

CC 21'  may be 

either positive or negative. Here T1 and C1 (T2 and C2) 

are the temperature and concentration at the lower 
plate (upper plate), respectively. 
Perturbations and Normal Mode Analysis 

The basic state (2.8) is slightly perturbed so 
that every physical quantity is assumed to be the sum 
of a mean and fluctuating component, later 
designated as prime quantities and assumed to be 
very small in comparison to their equilibrium state 
values. We assume that the small disturbances are 
the functions of space and time variables. Hence the 
perturbed flow may be represented as  
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where 

   '' , ', ', ' '' '

x y zu',v',w , h ,h ,h and p     

are respectively the perturbations in fluid velocity, 
magnetic field, temperature, concentration, density 
and pressure. 
 We substitute (3.1) into the governing 
equations (2.1) to (2.7) and linearize them. Analysing 
the disturbances into normal modes, we assume that 

any perturbation quantity  tzy,x,f ,'  is of the form 

 (3.2)     ,exp)(,,,' czbyaxitzftzyxf    

 where the real parts of the expressions 
denote the corresponding physical quantities a, b and 
c are the real wave numbers along the x, y and z 
directions respectively and a,  time constant, is 

complex in general. 
 For the considered form of the perturbations 
in equation (3.2), linearized equations become 
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Equations (3.11) to (3.13) yield 
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 After eliminating various physical quantities 
from these equations, we obtain the final stability 
equation as  
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 On simplifying equation (3.16), after 
multiplying by *  (complex conjugate of ) in 

numerator and denominator and substituting 
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Analytical Discussion 

 Now in this section, we shall prove some 
important results with the help of equation (3.17). 
Theorem 1 

 For the existence of oscillatory modes, we 
must necessarily have 
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 For oscillatory modes, the equation (4.1)  
reduces to 
(4.2)
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 For the validity of the above equation, we 
must necessarily have 
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 which Proves the theorem. 
Remark 

 The another condition for the validity of the 
equation (4.2) we can show that in similar way 
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A Particular Case  

 We now consider the particular case when 

,'   which holds under the physical situations of 

the thermal diffusivity and solute diffusivity are such 
that both are equal. Under this situation the imaginary 
part of equation (3.17) reduces to the equation 
 (4.3)
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We now prove the following theorems 
Theorem 2 
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Theorem3 

 If the oscillatory modes exist under the 
condition ' ' 0,     then  
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Proof 

 If the modes be oscillatory then the equation 
(4.3) can be written as 
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 Now, if we impose the condition 
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which proves the theorem. 
Theorem 4  

 The non-oscillatory modes are stable under 
the condition  
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 The R.H.S. of above equation is negative 
definite, since the term on the bracket R.H.S. is 
positive definite, whereas the term in big bracket on 
L.H.S. is positive definite. Thus, for the consistency of 

the above equation we must necessarily have 0r   

and this implies that the system is stable. 
Theorem 5 

 Let the system be stable ( 0r  ) under the 

condition ' ' 0.    Then r and 
i  for stable 
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Proof 

 The real part of equation (3.17) yields 
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 Now, if we impose the condition 

' ' 0,     then the equation (4.4) reduces to  

(4.5) 
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where   0' 22  rcrmA   

and 
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Now equation (4.5) can be written as 
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 The term in brackets on L.H.S. is positive 
definite. Thus, for stable modes, we must necessarily 
have  
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 Which is the required condition. 
Conclusion 

 In this paper we have examined within the 
framework of linear stability analysis with the model 
suggested by Brinkman, the thermal instability of an 
incompressible viscous fluid in the presence of 
magnetic field confined in an anisotropic porous 
medium.Uniform temperature and concentration 
gradients are maintained along z-axis. The interesting 
properties associated with magnetic field have 
attracted a number of different results on stability by 
using perturbations and normal mode analysis. In 
present paper, the important results obtained include 
different conditions of stability, existence of oscillatory 

modes, non-oscillatory modes, discussion for stable 
and unstable modes, if exist in the problem. Also we 

 have considered the particular case when ,'   

which holds under the physical situations of the 
thermal diffusivity and solute diffusivity are such that 
both are equal. Under this situation we have proved 
different conditions of stability and various theorems 
on stability. 
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